
How thick should my sample be? 
 
Cautionary remarks 
The most common answer to the question "How thick should my sample be?", or more 
generally "What should be the dimensions of my sample?", is that the sample should be a 
"10% scatterer", which presumably means that 10% of the neutrons that enter the sample 
are scattered at least once (or does it means that 10% of the neutrons are scattered once 
and then leave without being absorbed or scattered again?) The argument is that a "10% 
scatterer" scatters roughly 10% of the scattered neutrons a second time (and ~10% of 
those neutrons yet again), and that this amount of multiple scattering is in some sense 
acceptable. 
 
The fact that a sample is a "10% scatterer" does not necessarily imply that ~10% of 
the scattered neutrons are scattered again before they exit the sample. For example, 
Wuttke (Physica B 292, 194 (2000)) has shown that a thin annular sample whose 
transmission is 96% for a tightly collimated beam, and ~94% for a beam that fully 
illuminates the sample, scatters ~10% of the scattered neutrons a second time. This 
implies that a "10% scatterer", meaning a sample with little absorption and a transmission 
of about 90% (depending how it is measured), scatters something like 15-25% of the 
neutrons a second time. 
 
An experimentalist sometimes has to decide the dimensions of his or her sample using a 
calculated value for the transmission. This implies that the macroscopic scattering and 
absorption cross sections are known. The number density can generally be calculated 
quite well, and the microscopic cross sections are generally obtained from a compilation 
such as that of Sears in Neutron News 3 (3), 26 (1992). This approach can be quite 
misleading, especially for hydrogenous materials. This is discussed below, under the 
heading “Scattering cross sections”. See also a forthcoming article entitled "Total neutron 
scattering cross sections" by J.R.D. Copley, to be published in Neutron News.  
 
Calculating the scattering probability given the dimensions of a sample  
Given the proposed geometry (we shall consider slabs, cylinders and annular samples), 
and the relevant macroscopic scattering and absorption cross sections , SΣ  and AΣ  
respectively, the scattering probability, S, can be calculated. Note that S is the probability 
of scattering at least once (followed by escape, absorption or additional scattering).  
 
For a slab sample of thickness t, whose normal is at an angle α to the beam,  
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For a fully illuminated cylindrical sample of radius R, with axis normal to the beam, 
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where 2 2d(y) R y= − . 
 
For a fully illuminated annular sample with inner and outer radii R1 and R2 respectively 
(annular thickness 2 1t R R= − ), whose axis is normal to the beam,  
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Calculating the dimensions of a sample given its scattering probability  
For a slab sample normal to the beam, the value of t can be directly obtained from the 
single scattering probability expression:  

T

T S

S1t ln 1
⎡ ⎤Σ

= − −⎢ ⎥Σ Σ⎣ ⎦
. 

There is no solution if S TS > Σ Σ . 
 
For the general case of an annular sample there is no analytical solution so the integral 
must be calculated numerically. An approximate solution (which is only valid if 1,2t R ) 
is based on the approximate result  

( )S
T

T

S 1 exp tΣ
= − −πΣ⎡ ⎤⎣ ⎦Σ

 

which yields 
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Again there is no solution if S TS > Σ Σ . 
  
For the general case of a cylindrical sample there is no analytical solution. The integral 
can be calculated numerically as a function of the dimensionless magnitude TRΣ .  
 
Scattering cross sections  
In general the macroscopic total scattering cross section SΣ  is not the same as the 
macroscopic bound atom scattering cross section BΣ ; SΣ  depends on much more, 
including the temperature, the incident neutron energy, and the physics and chemistry, 
indeed the structure and dynamics of the sample. (Think about the ideal gas, a rigid 
crystalline solid, graphite, beryllium, water, the ammonium halides, etc.)  
 
The macroscopic bound atom scattering cross section  BΣ  may be calculated as follows: 
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bound atom scattering cross section of element k, Nρ  is the number density of scattering 
units, kn  is the number of atoms of element k per scattering unit, ρ  is the mass density, 

AN  is Avogadro's number, M is the mass ("molecular weight") of a scattering unit, and 

km  is the atomic mass of element k. 
  
The macroscopic total scattering cross section SΣ , which appears in the expressions for 
S given above, may be written as  
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where ( )2
fd d dEΣ Ω  is the macroscopic differential cross section for scattering into solid 

angle Ω  and scattered energy fE . 
The need to distinguish between SΣ  and BΣ  is particularly important when working with 
hydrogenous materials. For example BΣ for water is roughly 170 b/molecule whereas 

SΣ at 9Å (1 meV) is ~240 b/molecule. On the other hand SΣ  at 1.8 Å (25 meV) is about 
100 b/molecule.  
 
The macroscopic total cross section is defined as the sum of the macroscopic total 
scattering cross section and the macroscopic absorption cross section. 
 


