Scattering Neutrons from Magnons, Spinons, Solitons, and Breathers

Collin Broholm,
Johns Hopkins University and NIST Center for Neutron Research

- Neutron Scattering and 1D magnetism
- Spin-1 chains
- Toward Quantum Criticality
 - strongly interacting dimers (PHCC)
 - Quantum critical spin-1/2 chain
- Field Effects at Criticality
 - $H>0$: Extended Critical phase
 - $h_s>0$: From spinons to solitons
- Conclusions
Acknowledgements

G. Aeppli UCL
C. D. Batista Los Alamos
Y. Chen LANL
D. C. Dender NIST
T. Hong JHU
M. Kenzelmann JHU & NIST
C. P. Landee Clarke University
K. Lefmann Risø National Lab
Y. Qiu NIST & Univ. Maryland
D. H. Reich JHU
C. Rische Univ. of Copenhagen
M. B. Stone Penn State University
M. M. Turnbull Clarke University
I. Zaliznyak BNL
Neutron Scattering and 1D Magnetism
Magnetic Neutron Scattering

\[\hbar Q = p_i - p_f \]

\[\hbar \omega = E_i - E_f \]

The scattering cross section is proportional to the Fourier transformed dynamic spin correlation function

\[S^{\alpha \beta}(Q, \omega) = \frac{1}{2\pi\hbar} \int dt \ e^{-i\omega t} \frac{1}{N} \sum_{RR'} e^{iQ(R-R')} \langle S^\alpha_R(t) S^\beta_{R'}(0) \rangle \]
NIST Center for Neutron Research
\[
S^{\alpha\beta}(Q, \omega) = \frac{1}{2\pi\hbar} \int dt \, e^{-i\omega t} \frac{1}{N} \sum_{RR'} e^{iQ \cdot (R-R')} < S^{\alpha}_{R}(t) S^{\beta}_{R'}(0) >
\]
Better Instrumentation at Existing Sources

[Graph showing neutron flux and energy distribution with annotations for 2 cm and 4 cm distances]

Jose A. Rodriguez, NIST
20+20 Channel MACS detection system
Spallation Neutron Source at ORNL, TN

Neutrons + B>30 Tesla

One of 18 instruments
Magnons and their decay in spin-1 chains
Neutrons Create magnons in spin-1 chain

\[\text{NENP} = \text{Ni}(\text{C}_2\text{H}_8\text{N}_2)_2\text{NO}_2\text{ClO}_4 \]

Ma et al. PRL (1992)
Spin-correlation function of the $S=1$ antiferromagnetic Heisenberg chain at $T=0$

Minoru Takahashi

Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106

(Received 4 January 1988; revised manuscript received 2 May 1988)

The correlation function $\rho(l) = \langle S_i S_{i+l} \rangle$ is calculated for the spin-1 Heisenberg antiferromagnetic chain ($H = J \sum_i \vec{S}_i \cdot \vec{S}_{i+1}, \vec{S}_{N+1} = \vec{S}_1$) at the ground state. Using the Monte Carlo method of Hirsch, Sugar, Scalopino, and Blankenbecler, we find that $\rho(l)$ decays exponentially in contrast to the $S = \frac{1}{2}$ case where $\rho(l)$ decays algebraically. This fact coincides with Haldane’s prediction and recent numerical calculations. We calculate the upper bound of elementary excitation from the structure factor using a variational method which resembles the Feynman theory for elemen-

FIG. 5. Elementary excitation $\epsilon(q)$ and $g(q)$ defined in (13) for $S=1$ AFH chain in units of J. Circles are elementary excitation with total spin one and momentum q of the $N=14$ chain which is taken from the Parkinson and Bonner’s table in Ref. 6. Crosses are $g(q)$ for the $N=32$ chain.

\[
\epsilon(q) = \frac{[\epsilon(q) + \epsilon(-q)]}{2} \leq \frac{1}{2} \frac{\langle \psi | S^z_{-q} H S^z_q + S^z_q H S^z_{-q} | \psi \rangle}{\langle \psi | S^z_{-q} S^z_q | \psi \rangle} - E_0 = \frac{1}{2} \frac{\langle \psi | [S^z_{-q}, [H, S^z_q]] | \psi \rangle}{\langle \psi | S^z_{-q} S^z_q | \psi \rangle} = \frac{J (1 - \cos q) \left[-N^{-1} \sum_i \langle S^z_i S^z_{i+1} + S^z_i S^z_{i+1} \rangle \right]}{S(q)} = \frac{J (1 - \cos q) [\rho(1) - \rho(1)]}{S(q)} \equiv g(q)
\]
Single mode approximation for spin-1 chain

\[\hbar \omega \text{ (meV)} \]

\[S_{\parallel}^{\parallel}(q) \]

Ma et al. PRL (1992)

Dispersion relation

Equal time correlation function
Excitation spectra of $S = 1$ antiferromagnetic chains

Minoru Takahashi

Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

(Received 10 February 1994)

The dynamical structure factor $S(Q, \omega)$ of the $S = 1$ antiferromagnetic Heisenberg chain with length 20 at zero temperature is calculated. The lowest-energy states have the δ-function peak at the region $\pi \geq |Q| > 0.3\pi$. At $|Q| < 0.3\pi$ the lowest-energy states are the lower edge of the continuum of the scattering state, the strength of which decreases for large systems. This gives a reasonable explanation for the experimental fact that no clear peak is observed at the region $Q < 0.3\pi$. This situation is more apparent for the valence-bond solid state. On the contrary for $S = \frac{1}{2}$ antiferromagnetic Heisenberg chain the lowest-energy states are always the edge of the continuum.
Neutrons Create magnons in spin-1 chain

Ma et al. PRL (1992)
Approaching Quantum Criticality
Strongly Interacting Dimers in PHCC

\((\text{C}_4\text{H}_{12}\text{N}_2)\text{Cu}_2\text{Cl}_6\) (PHCC)

\(\hat{\hbar}\omega \text{ (meV)}\)

\(2\Delta < E_{\text{max}}\)

Stone et al. PRB (2001)
Magnon decay in two-magnon continuum

Uniform spin chain: Unbound spinons

\[\text{Cu(C}_4\text{H}_4\text{N}_2)(\text{NO}_3)_2 \]

Stone et al. (2003).

a Data, CuPzN H=0

\[\tilde{\Gamma} (1/\text{meV}) \]

\[\hbar \omega (\text{meV}) \]

\[\tilde{q} / \pi \]
Finite T scaling at the QCP

Exact low energy scaling form is known for spin-1/2 chain:

\[
\chi''(q\omega) = \frac{\pi}{k_B T} \text{Im} \left[\rho\left(\frac{\hbar \omega - v(q - \pi)}{4\pi k_B T} \right) \rho\left(\frac{\hbar \omega + v(q - \pi)}{4\pi k_B T} \right) \right]
\]

Here we measure the q-integrated “local” response:

\[
\chi''(\omega) = \int dq \chi''(q\omega) \sim \frac{1}{J} \tanh\left(\frac{\hbar \omega}{k_B T} \right)
\]

H. J. Schultz PRB (1986)
Local response of spin-1/2 chain

\[
\chi''(\omega) = \int dq \chi''(q\omega) \sim \frac{1}{J} \tanh \left(\frac{\hbar \omega}{k_B T} \right)
\]
Spin-$\frac{1}{2}$ chain in uniform field
Spinons in magnetized spin-$\frac{1}{2}$ chain

(XY case for simplicity)
Uniform Spin $\frac{1}{2}$ chain

Stone et al. (2003)
Uniform Spin $\frac{1}{2}$ chain

Stone et al. (2003)
Spin-$\frac{1}{2}$ chain in a staggered field
Why staggered field yields bound states

Zero field state quasi-long range AFM order

Without staggered field distant spinons don’t interact

With staggered field solitons separate “good” from “bad” domains, which leads to interactions and bound states
Spin-$\frac{1}{2}$ chain with two spins per chain unit

\[H = \sum_n \left(J S_n \cdot S_{n+1} + D_n S_n \times S_{n+1} - \mu_B H g_n S_n \right) \]

\[= \sum_n \left(J S_n \cdot S_{n+1} - \tilde{H} S_n^z - h_s (-1)^n S_n^x \right) \]

\[h_s \sim \left(\frac{g_1 - g_2}{2} \right) H + \frac{1}{2J} D \times \left(\frac{g_1 + g_2}{2} \right) H \]

Xia and Riseborough (1988)

Oshikawa and Affleck (1997)
H=0 T

\[\tilde{q} (\pi) \]

\[\hbar \omega \text{(meV)} \]

Kenzelmann et al. (2003)
Bound states from 2-spinon continuum

\[\tilde{q} = \pi \]

\[\tilde{q} = 0.77\pi \]

Kenzelmann et al. (2003)
Sine-Gordon mapping of spin-1/2 chain

Effective staggered + uniform field spin hamiltonian

\[H_{\text{eff}} = \sum_n \left(J \tilde{S}_n \cdot \tilde{S}_{n+1} - \tilde{H}\tilde{S}_n^z - h_s (-1)^n \tilde{S}_n^x \right) \]

Spin operators are represented through a phase field \(\tilde{\phi}(x, t) \) relative to incommensurate quasi-long-range order with Lagrangian density

\[L = \frac{1}{2} \left[\left(\partial_i \tilde{\phi} \right)^2 - \left(\partial_x \tilde{\phi} \right)^2 \right] + C h_s \cos \left(2\pi R(H) \tilde{\phi} \right) \]

This is sine-Gordon model with interaction term proportional to \(h_s \)

Spectrum consists of

- Solitons, anti-solitons

\[M = J A \left(\frac{\tilde{H}}{J} \right) \left(\frac{h_s}{J} \right)^{\frac{1}{2-2\pi R(\tilde{H})^2}} \]

- Breather bound states

\[M_n = 2M \sin \left(n\pi \xi(H) / 2 \right) \]

Oshikawa and Affleck (1997)
Bound states from 2-spinon continuum

Breathers $n=1,2$ and possibly 3

$\tilde{q} = \pi$

Soliton, M

$\tilde{q} = 0.77\pi$

Kenzelmann et al. (2003)
Testing sine-Gordon predictions

Theory by Essler-Tsvelik (1998)

Kenzelmann et al. (2003)
MFT of fermions in a staggered field

\[\mathcal{H}_{\text{MF}} = -\frac{J\gamma}{2} \sum_{i,\sigma} (c_i^\dagger c_{i+1,\sigma} + \text{H.c.}) - \frac{g_c}{2} \mu_B H \sum_{i,\sigma} \sigma n_{i\sigma} \]

\[-\frac{1}{2} (g_a \mu_B H_{\text{st}} + J\delta) \sum_{i,\sigma} (-1)^i c_{i\sigma}^\dagger c_{i\sigma}^- + \lambda \sum_i n_i,\]

\[\mathcal{H}_{\text{MF}} = \sum_{-\pi < k \leq \pi, \sigma} \left[\left(-J\gamma \cos(k) - \frac{\sigma}{2} g_c \mu_B H \right) c_{k\sigma}^+ c_{k\sigma}^- \right. \]

\[-\frac{1}{2} (g_a \mu_B H_{\text{st}} + J\delta) \left(c_{k+\pi\sigma}^+ c_{k\bar{\sigma}}^- + c_{k\sigma}^+ c_{k+\pi\bar{\sigma}}^- \right) \right]. \]

\[\epsilon_{k\sigma}^\pm = \pm \sqrt{\left(J\gamma \cos(k) + \frac{\sigma g_c}{2} \mu_B H \right)^2 + \frac{1}{4} (g_a \mu_B H_{\text{st}} + J\delta)^2}, \]

Kenzelmann, Batista, et al. (2005)
Mean Field Dispersion Relations

\[\tilde{\hbar}\omega(q, \nu) \]

(a) \(\nu = x, y \)

(b) \(\nu = z \)
High energy bound states

Kenzelmann et al. (2005)
Conclusions

- **Single mode approximation**
 - Good for spin-1 chain when $q > 0.3\pi$
 - A versatile tool for experimentalists & theorists

- **Decay of bound state in near critical spin-1/2 bi-layer**

- **Spin-1/2 chains: Physical realization of QCP**

- **Uniform field exposes extended critical state**

- **Staggered fields**
 - inherent to multi-atom cells
 - produce rich spectrum of bound states

- **Sine-Gordon model describes**
 - Bound state energies
 - Breather intensities
 - Field dependent incommensurability

- **High-E bound states predicted & observed**
Some Challenges in Quantum Magnetism

- Identify isotropic D>1 critical phase
 - Isolated critical phase via perturbations
 - Purify known glassy quantum magnets
- “Vortex lattice” in quantum magnet
 - High field phase of spin-1/2 ladder
 - Correlations in magnetization plateau
- Structure & dynamics of quantum impurities in D>1
- Itinerant quantum magnetism
 - Frustration+low D+mobile fermions