OUTLINE

• 1. The SANS Technique

• 2. SANS Data Analysis
 Standard Plots (Guinier, Porod)
 SANS Models
 Inverse Fourier Transform
 Shape Reconstruction Method

• 3. SANS Research Topics
 A- Phase Transitions in Pluronic P85 Solutions
 B- Role of Chirality in Peptide Biogels
 C- Structure of SDS Micelles

• 4. Final Points
 VSANS and USANS
 Final Words
1 – The SANS Technique

The NIST Center For Neutron Research
Small-Angle Neutron Scattering

\[Q = \frac{4\pi}{\lambda} \sin \left(\frac{\theta}{2} \right) \]

\[\text{scattering angle} \]

Monochromatic Neutron Beam

Incident Beam

Source Aperture

Sample Aperture

Monochromation

Collimation

Scattering

Detection

Nanoscale Structures

Length Scale (Å)

Scattering Variable Q (Å⁻¹)

Polymers

Complex Fluids

Biology

USANS

SANS
SANS Cross Sections

\[I(Q) = \frac{d\Sigma_{\text{coh}}(Q)}{d\Omega} + \frac{d\Sigma_{\text{incoh}}}{d\Omega} \]

COHERENT

\sim \text{ Contrast factor} = (\rho_A - \rho_B)^2

- Info. about structure

INCOHERENT

- Q-independent
- no info. about structure

Scattering length density: \(\rho_A = \frac{b_A}{v_A} = \frac{\text{scattering length}}{\text{volume}} \)

The Contrast Match Method

Finite contrast Zero contrast

Multiple contrasts Contrast match
2 – SANS Data Analysis

SANS Data Analysis

- Standard Plots (Guinier Plot, Porod Plot)
- SANS Models
- Inverse Fourier Transform
- Shape Reconstruction Method
Guinier-Porod Regions

- **Cylinder with** $R_g^2 = 100 \, \text{Å}$ and $R_g^1 = 10 \, \text{Å}$
- **Scattering Variable** $Q (\text{Å}^{-1})$
- **Form Factor** $P(Q)$
- **Guinier Region**
 - $1/Q^0$
- **Intermediate-Q Guinier Region**
 - $1/Q^1$
- **Porod Region**
 - $1/Q^4$

Guinier Plots
- Slope yields $R_g^2 = \frac{1}{12} \sum \frac{R_i^2}{2}$

SANS Models

- **Macromolecules**
 - Form Factor $P(Q)$
 - Structure Factor $S_i(Q)$
- **Particles**
 - Form Factor $P(Q)$
 - Structure Factor $S_i(Q)$

Random Phase Approximation

\[
\frac{d\Sigma(Q)}{d\Omega} = \phi_A (\rho_A - \rho_B)^2 V_A P(Q) S_i(Q)
\]
Particle Structure Factor – The Ornstein-Zernike Equation

\[\frac{d\Sigma(Q)}{d\Omega} = \phi_A (\rho_A - \rho_B)^2 V_A P(Q) S_I(Q) \]

Form Factor \(P(Q) \)

Structure Factor \(S_I(Q) \)

Fourier Transform

Density-density correlation function:

\[P(Q) = \frac{\langle n(-Q)n(Q) \rangle}{n^2} = \frac{1}{V_P} \int \int \frac{n(r)n(r')}{n^2} \exp[-i\mathbf{Q} \cdot (\mathbf{r} - \mathbf{r}')] \]

Fourier transform:

\[P(Q) = \int d^3r \exp[-i\mathbf{Q} \cdot \mathbf{r}] P(r) = \frac{1}{V_P} \int_0^\infty dr \int_0^\infty r'^3 \sin(Qr)' P(r) \frac{\sin(Qr)}{Qr} \]

Radial pair correlation function:

\[P(r) = 1 - \frac{3}{4} \left(\frac{r}{R} \right) + \frac{1}{16} \left(\frac{r}{R} \right)^3 \]
3. SANS Research Topics

A- Phase Transitions in Pluronic P85 Solutions

B- Role of Chirality in Peptide Biogels

C- Structure of SDS Micelles
Pluronics

Dissolved Unimer (low temperature)

Formed Micelle (high temperature)

PEO
PPO

EO: CH₂CH₂-O-
PO: CH(CH₃)CH₂-O-

P85: EO₂₆PO₄₀EO₂₆

Pluronics Micelles

0.5 % P85 in d-Water

Scattering Intensity (cm⁻¹)

0.5 % P85 in d-Water

Scattering Variable Q (Å⁻¹)

0.01 0.1

1/Q⁴
1/Q⁵
1/Q⁶
1/Q⁷

spherical micelles
lamellar micelles
cylindrical micelles
unimers
Phase Diagram

Guinier Factor

Temperature (°C)

Core-Shell Spherical Particles Model

\[
\frac{d\Sigma(Q)}{d\Omega} = \frac{N}{V} \left[(\rho_A - \rho_B) V_A \left(\frac{3 j_l(Q R_A)}{Q R_A} \right) + (\rho_B - \rho_C) V_{A+B} \left(\frac{3 j_l(Q R_B)}{Q R_B} \right) \right]^2 |

10% P85 Pluronic/D2O, 40 °C

Fits yield

\[
\rho_c = 6.4 \times 10^6 \text{ Å}^2
\]

\[
\rho_B = 5.9 \times 10^6 \text{ Å}^2
\]

\[
\rho_A = 1.7 \times 10^6 \text{ Å}^2
\]
Core-Shell Spherical Particles

Material Balance Equations:

\[
\frac{4\pi}{3} R_A^3 = N_{agA}[40v_{PPO} + 52f.v_{EO} + 52.f.v_{D_2O}.y_A]
\]

\[
\frac{4\pi}{3}(R_B - R_A)^3 = N_{agB}[52.(1-f).v_{EO} + 52.(1-f).v_{D_2O}.y_B]
\]

\[
\rho_A = \frac{N_{agA}[40v_{PPO} + 52.b_{EO}.f + 52.b_{D_2O}.f.y_A]}{\frac{4\pi}{3}R_A^3}
\]

\[
\rho_B = \frac{N_{agB}[52.b_{EO}.(1-f) + 52.b_{D_2O}.(1-f).y_B]}{\frac{4\pi}{3}(R_B - R_A)^3}
\]

Results for 10% P85 at 40 °C:

In the core:
- 2,795 PPO monomers
- 690 PEO monomers
- 490 D₂O molecules

In the shell:
- 2,943 PEO monomers
- 34,167 D₂O molecules

B- Role of Chirality in Peptide Biogels
Faraday Rotation

Substances rotate linearly polarized light to the left (L-type) or to the right (D-type).

Chirality

- A molecule is chiral if it is different from its mirror image.

- Human hands are chiral.

- Non-biological substances are heterochiral. They can be of the L-type or D-type.

- Biological substances are homochiral. They are either of the L-type or of the D-type.

- Proteins are of the L-type. Sugars are of the D-type. DNA is of the D-type.

The reason is still a mystery.
Proteins

- **Proteins** are responsible for most **biological function**. They are made out of **peptides**. Peptides are made out of **amino acids**. There are 20 amino acids.

- **Examples** of **amino acids** include Lysine (K), Glutamate (E), Tryptophan (W) and Alanine (A)

- **Most proteins rotate polarized light to the left**. They are left handed or **L-type**

DNA

- **DNA** is the blueprint for life. It is the **template for the synthesis of proteins**

- **DNA** is made out of **nucleotides**. There are 4 DNA nucleotides: A, C, T and G

- The **human genome** contains 6 billion nucleotides making up some 23,000 genes

- **Most DNA rotate polarized light to the right**. They are right handed or **D-type**

Peptide Biogels

- **Peptides** can be **synthesized to be L-type or D-type**

- **Series of L-type and D-type short peptide sequences** (11 amino acids) were synthesized.

- These were **combined** to give **L-D- or D-L- heterochiral mixtures** and **L-L- or D-D- homochiral mixtures**

- **The resulting gels** were **investigated** using **mechanical testing** (shear response) and **SANS measurements**
- Heterochiral samples gel faster. Homochiral samples are slow to gel.

- Homochiral gels are initially weaker then become stronger

- Heterochiral gels scatter differently from homochiral ones

- They are all characterized by fibrilar structure
SANS Data Analysis

A

Heterochiral

\[D-K/E \]
Fiber 50 Å
Web 18 Å
90 Å
D-K/D-E
Fiber 70 Å
Web 20 Å
160 Å

Homochiral

\[L-K/D/E \]
Fiber 50 Å
Web 18 Å
90 Å
L-K/L-E
Fiber 70 Å
Web 20 Å
160 Å

Shape Reconstruction
Fiber cross sections

In reverse Fourier Transform

- Homochiral fibers are thicker and denser than heterochiral ones

Fiber-Web Structure

- Peptide biogel is formed of fibers joined by a web
Results

- Chirality plays a role in the mechanical properties and structure of biogels

- Homochirality confers higher strength (shear modulus) and yield stress value. **Right-right hand-shake is stronger.**

- Heterochirality confers faster gelation kinetics

- Biogel structure consists of main fibers held together by a web of cross fibers

- Fibers for homochiral biogels are thicker and denser

- Advantages conferred to homochirality lead to enhanced stability

C- Structure of SDS Micelles
Micelle Formation

- Surfactants are formed of a hydrophilic head and a hydrophobic tail

- Micelles form when enough surfactants aggregate (above the critical micelle concentration or CMC)

- SDS surfactants form micelles in water (or deuterated water)

SANS from SDS Micelles

- Ellipsoidal micelles form
Ellipsoid Micelles Model Fit

\[I(Q) = \frac{A}{Q^6} + \left[\frac{d\Sigma(Q)}{d\Omega} \right]_{\text{ellipsoids}} + B \]

\[\left[\frac{d\Sigma(Q)}{d\Omega} \right]_{\text{ellipsoids}} = \phi \rho^2 V_r P(Q) S_r(Q) \]

- Power law (low-Q) + ellipsoidal micelles (high-Q) model fits well

Some Fit Results

- Micelles become smaller at higher temperatures and lower volume fraction
More Fit Results

- Salt addition affects lateral growth only

Material Balance Equations

- SDS surfactant fraction remains constant above the CMC
Phase Diagram

- SDS/water phase diagram from calorimetry

4. Final Points
Upgrade and VSANS

SANS, VSANS and USANS Ranges

4% PEO/d-Ethanol,
$M_w = 42,900$ g/mole, $T = 25^\circ C$
SANS and USANS Data

Crosslinked CTVB Micelles

Scattered Intensity (cm$^{-1}$) vs. Q (Å$^{-1}$)

- Red line: gel with no excess oil
- Blue line: gel with excess octane
- Black line: gel with excess toluene

Final Words

THE SANS PROGRAM AT NIST

200 experiments per year
15 theses per year
80 publications per year

ACKNOWLEDGMENTS

Steve Kline, Marc Taraban, Bruce Yu

REFERENCES

http://www.ncnr.nist.gov/staff/hammouda/